

1

periods

LESSON 9 1: Development of the Periodic Table

- 1869: Dimitri Mendeleev
- 1914: Henry Moseley

 - \circ This means
 - The Result...

Organization of the Periodic Table

Reactivity of Elements

Example: Which two elements have similar chemical properties and why? Na, K, Li, Be

LESSON 9.2: Categories & Properties of Elements

Quick Definitions (helpful for later)

 $\stackrel{\bullet}{tac}$ Electronegativity –

 $\stackrel{\bullet}{\mathrm{tr}}$ Ionization Energy –

 \bigstar Electron Affinity –

NEED TO KNOW! Metals, Nonmetals, and Metalloids

PRACTICE!

Name:		î -			
		4. Which element is in Group 2 and Period 7 of the Periodic Table?			
1. On the present Periodic	Table of the Elements,				
the elements are arranged according to increasing		(1) magnesium (2) manganese	(3) radium (4) radon		
(1) # of oxidation states	(3) atomic mass	172501 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199			
(2) # of neutrons	(4) atomic number	5. In which shell are the valence electrons of the elements in Period 2 found?			
2. The properties of elemer	ts are periodic functions				
of their		(1) 1 (2) 2	(3) 3	(4) 4	
(1) mass numbers	(3) atomic radii	6. The atoms of the elements in Group 2 have the			
(2) atomic masses	(4) atomic numbers	same			
3. Bromine has chemical properties most similar to		(1) mass number	(3) # of protons	(3) # of protons	
-		(2) atomic number	r (4) # of valence	e-	
(1) fluorine	(3) krypton	5.5 III III	200		
(2) potassium	(4) mercury	7. In which list are the elements arranged in order of increasing atomic mass?			
		(1) Cl, K, Ar	(3) Te, I, Xe		
		(2) Fe, Co, Ni	(4) Ne, F, Na		

PROPERTIES OF METALS

What makes metals malleable & ductile?

<u>Metals & Metal Alloys</u>

PROPERTIES OF METALLOIDS

PROPERTIES OF NONMETALS

Fun Facts & Element Groups (Metals)

Group 1: Alkali Metals

- Most reactive group of metals therefore they are ______
- Must be melted (aka_____) then decomposed to isolate the pure metal alone
- Only form _____ compounds NOT covalent
- 1 valence electron
- Lose 1 electron to form +1 ions
- Extremely reactive with water via single replacement producing an "alkali" solution & hydrogen gas

HYDROGEN

Group 2: Alkaline Earth Metals

- Do not exist uncombined in nature
- Also only form ionic compounds, NOT covalent compounds
- 2 valence electrons
- Lose 2 electrons to form +2 ions
- Fairly reactive with water via single replacement producing an "alkali" solution & hydrogen gas (not as reactive as group 1 metals)

The DOW Process:

Groups 3-12: Transition Metals

- AKA "d-block" on periodic table
- May be found in earth pure, in compounds, or in ores (minerals)
- Less reactive metals
- When reacting, they may LOSE electrons from their TWO outermost sublevels (_ & _)
- Form multiple + ions
- Form <u>COLORED IONS</u> in solution (aq)

Examples:

- Copper-isolated from copper ores by electrolysis. Has wide usage because of its excellent thermal & electrical conductivity
- Iron the most abundant transition element. SO SO important in manufacturing and construction because it is used to make
- Silver, Gold, Platinum are called "Noble" metals because

57

L'A

Mrs. Lang

Fun Facts & Element Groups (Nonmetals & Noble Gases)

Group 13: The Boron Family

Group 14: The Carbon Family

- Progresses from nonmetal to metalloid to metal therefore characteristics vary down the family
- Silicon second most abundant element in earth's crust, most common metalloid
- Sands, soils, clays, and many minerals are composed of "silicates" (compounds containing silicon and oxygen)
- Carbon natural form is _____. Also exists in _____- fundamental element of _____.

ALLOTROPY:

Group 15: The Nitrogen Family

- Progresses from nonmetal to metalloid to metal (again) therefore characteristics vary down the family
- Pure nitrogen makes up about 78% of the air we breathe
- AMMONIA (_____): this country produces TONS AND TONS of it for the purpose of making _____
- Pure nitrogen (N2 gas) contains a _____ which is why N2 is not very reactive
- Nitrogen is essential to all living things

- Nitric Acid (_____): an important industrial compound of Nitrogen. Used to make explosives like TNT and nitroglycerine
- OSTWALD PROCESS: method to produce nitric acid
- Phosphorus exists as a tetratomic molecule (P4). Also essential to life _____. Has 2 allotropes, red & white phosphorus.
- Arsenic used in compounds that serve as poisons like weed killer, insecticides, etc.

Group 16: The Chalcogens

- Oxygen is a very reactive nonmetal due to its high _____
- Oxygen always has a negative oxidation # except in OF2
- Vital to life due to its role in cellular respiration
- about 20% of the earth's atmosphere
- Oxygen exhibits ALLOTROPY
- Sulfur has 3 allotropic forms. All solids at room temperature
 - Octoatomic (S8)
 - FRASCH PROCESS: the method for isolating underground sulfur deposits
 - Less reactive than oxygen
 - Has positive and negative oxidation numbers
 - Important compounds with sulfur include:

57

Mrs. Lang

- MOST reactive nonmetals; they do _____ exist in nature in the free, pure, form. Only in compounds.
- 7 valence electrons
- Gain 1 electron to form -1 ions
- Most REACTIVE nonmetal is F
- Only column/group with ALL 3 phases due to increasing _____ as you go down group
- HF(aq) used to etch glass, make Teflon & Freon

Group 18: The Noble Gases

- Unreactive or INERT
- Stable octet (8 valence electrons)
 - Exception is He which has 2 valence electrons
- Always <u>monoatomic</u>
 - Kr, Xe, and Rn can form bonds with F & O. he, Ne, and Ar will NOT do this....why?
 - This is why you see oxidation #s for Kr, Xe, and Rn
 - Example:
- Noble gases are widely used in welding where a non-reactive atmosphere is needed due to high temps
- They are used in light bulbs and advertising signs

REMINDERS:

57

Mrs. Lang

LESSON 9.3: Periodic Trends DOWN A GROUP

Down a Group (Don't Guess – Check Table S!)

-Number of energy levels

-Nuclear charge

-Atomic radius (size of the atom)

-Ionization energy (how much energy it takes to lose valence e-)

CI

La Mrs. Lang

-Electronegativity (how strongly an atom attracts e-)

 \bigvee What is Electron Shielding?

-Electron Affinity (amount of energy released when forming an anion -gaining e- to valence shell)

-Metallic character (how much it acts like a metal/how easily it loses e-)

-Nuclear charge

-Atomic radius (size of the atom)

Ionic vs. Atomic Radius

• Ion Size: Nonmetals

o Ion Size: Metals

o Comparing Ionic & Atomic Radii

-Ionization energy (how much energy it takes to lose valence e-)

-Electronegativity (how strongly an atom attracts e-)

-Electron Affinity (amount of energy released when forming an anion -gaining e- to valence shell)

-Metallic character (how much it acts like a metal/how easily it loses e-)

Best Metal on the Periodic Table: _____

Best Nonmetal on the Periodic Table:

Periodic Table Graphic Organizer

