Name:	Date:
Chem R Pd	Gas Webquest

Purpose- To use an online simulation to determine the relationships between pressure, volume and temperature and to observe real world applications.

Background- When matter is in the gas phase, particles are in the highest energy state and move quickly. When these particles are confined in a closed container, they are constantly colliding with one another and with the walls o the container. Pressure is defined as the force exerted on the walls of a container due to gas particles colliding into them. There are two factors that can affect pressure; temperature and volume. If we recall the definitions of temperature and volume, we are able to predict the relationships between pressure, temperature and volume.

In your own words, define:

Pressure:			
Temperature:			
Volume:			

Hypothesis- Predict the relationship between two variables. Sketch a line on each axis to represent that relationship and explain your prediction.

I. Volume-Pressure	^	Explain your prediction.
If the volume of a container	P	
decreases, pressure will	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
·	v	
II. Temperature-Volume	^	Explain your prediction.
If the temperature of a gas increases,	V	
volume will		
·	1	
III. Temperature-Pressure	•	Explain your prediction.
If the temperature of a gas increases,	P	
pressure will	_	
·	1	

Procedure- 1) Google "Phet Chemistry" and click on "Gas Properties".

- 2) Click "Download" and open the simulation
- 3) Write the steps you will take to test all 3 relationships.

**The <u>scientific method</u> states that to determine a relationship between 2 variables, the third has to remain CONSTANT. However, you MUST have particles in the container BEFORE you make something constant.

4) Determine the relationship <u>based on your observations</u> and explain why this occurs.

Variables	Experiment!	Relationship	Why does this happen? Support using EVIDENCE from the simulation
V – P (Temperature constant)		As V, P Relationship?	(Make sure to <u>answer in terms of</u> <u>collisions</u>)
T – V (Pressure constant)		As T 1, V Relationship?	
T – P (Volume constant)		As T 1 P Relationship?	(Make sure to <u>answer in terms of</u> <u>collisions</u>)

REASONING: Evaluate your hypothesis. Were your predictions correct or incorrect? EXPLAIN your reasoning based on what you observed in the simulation.	
EXTEND: Is there a way that we can measure the changes in pressure, volume, and temperature using one formula/relationship? Brainstorm this idea with your group and try to think of a formula in which all three variable can be included.	:S
Real-World Applications- Use one of the gas law relationships you discovered to explain each real-world scenarion.	0.
a. Your bicycle tires are more flat in the winter than in the summer.	
b. It is easier to open up a jar if you run it under hot water first.	
c. Balloons pop when you squeeze them.	

d. If you put an empty water bottle in the refrigerator, it will be all shriveled up the next day.
e. When scuba divers breathe out, their air bubbles get larger as they reach the surface of the water.
f. The plunger on a turkey syringe thermometer pops out when a turkey is done cooking.
g. Throwing an aerosol can (like hairspray) into a fire can cause it to explode.
h. An infected tooth forms an abscess that fills with gas. The abscess puts pressure on the nerve of the tooth, causing a toothache. Will a heating pad help the pain? Why?
i. Choose one relationship that you understand very well and describe an example of this in real life that we haven't discussed during this activity.