\qquad
UNIT 2 STUDY GUIDE

Concept	What is important?	Examples
Classifying matter based on...	\square Pure Substances can be elements or compounds. \square Mixtures are NOT pure substances. \square Particle diagrams \square Symbols/formulas \square Descriptions	Elements - On Table S, can't be broken down, all atoms are the same \square Compounds - Made up of 2+ different elements bonded \square Homogeneous mixtures - Made up of 2+ different substances (elements or compounds or both) physically blended, evenly scattered \square Heterogeneous mixtures Made up of 2+ different substances (elements or compounds or both) physically blended, unevenly scattered (sorted)
Identify states of matter using...	Particle diagrams Descriptions	1. Complete the particle diagram below to show what the substance would look like after evaporating. $\mathrm{Hg}(\mathrm{I}) \rightarrow \mathrm{Hg}(\mathrm{g})$ 2. Complete the box below by writing (Y) yes or (N) no. 3. What is aqueous (aq)?

| Physical
 techniques
 used to
 separating
 mixtures | \square Filtration | Chromatography |
| :--- | :--- | :--- |\quad| 2. What types of mixtures can each separate? |
| :--- |

Recognizing physical changes by...	\square Particle diagrams \square Descriptions \square Equations	1. Draw a physical change: 2. What are some examples of physical changes? 3. Why does this equation represent a physical change? $\mathrm{NaCl}(s)+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{NaCl}(\mathrm{aq})$
Recognizing chemical changes by...	Particle diagrams Descriptions Equations	1. Does the diagram below represent a physical or chemical change? How do you know? 2. Does the diagram support or refute the Law of Conservation of Mass? EXPLAIN. 3. Why does this reaction represent a chemical change? $\mathrm{Al}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})$

Periodic Table Intro	Compounds vs. Elements Table S	1. Know the location of the metals, metalloids, nonmetals, and noble gases on the Periodic Table \& use Table S to locate element names from their symbols 2. Consider the following substances: $\mathrm{Co}, \mathrm{CO}, \mathrm{MgCl}_{2}, \mathrm{Cl}_{2}$ - Which are considered compounds and how do you know?
Compound Formulas	\square Reading compound formulas	1. Determine the number of molecules, atoms of each element, and total atoms for each of the following:

