Date:				

UNIT 2 STUDY GUIDE

Concept	What is important?	Examples			
Classifying matter based on	Pure Substancescan be elements orcompounds.	Elements - On Table S, can't be broken down, all atoms are the same			
	Mixtures are NOTpure substances.Particle diagrams	Compounds - Made up of 2+ different elements bonded			
	Symbols/formulasDescriptions	Homogeneous mixtures - Made up of 2+ different substances (elements or compounds or both) physically blended, evenly scattered Heterogeneous mixtures - Made up of 2+ different substances (elements or compounds or both) physically blended, unevenly scattered (sorted)			
Identify states of matter using	□ Particle diagrams□ Descriptions	1. Complete the particle diagram below to show what the substance would look like after evaporating. $Hg(I) \rightarrow Hg(g)$ 2. Complete the box below by writing (Y) yes or (N) no. Phase Definite Shape Solid Definite Volume Solid Liquid Gas 3. What is aqueous (aq)?			

	□ Filtration	1. What types of mixtures can each separate?
Physical	□ Distillation	2. What different properties make these separations possible?
techniques used to	□ Chromatography	
separating mixtures	□ Evaporation	3. What is the difference between fractional distillation and simple distillation?
		1. The volume of the liquid is 25.8 mL. Is this a physical or chemical property? How do you know?
	□ Physical	
	□ Chemical	2. NaCl is soluble in water. Is this a physical or chemical property? How do you know?
Properties of matter		
		3. Baking soda can react with vinegar to form a gas. Is this a physical or chemical property of baking soda? How do you know?

		1. Draw a physical change:
Recognizing physical changes by	Particle diagramsDescriptionsEquations	 2. What are some examples of physical changes? 3. Why does this equation represent a physical change? NaCl(s) + H₂O(l) → NaCl(aq)
Recognizing chemical changes by	 □ Particle diagrams □ Descriptions □ Equations 	 Does the diagram below represent a physical or chemical change? How do you know?

Periodic Table Intro	□ Compounds vs.Elements□ Table S	 Know the location of the metals, metalloids, nonmetals, and noble gases on the Periodic Table & use Table S to locate element names from their symbols Consider the following substances: Co, CO, MgCl₂, Cl₂ - Which are considered compounds and how do you know? 			
Compound Formulas	□ Reading compound formulas	1. Determine the number each of the following 2 (NH ₄) ₃ PO ₄ 3 Ba(NO ₃) ₂		oms of each element, o	# Total Atoms