| Date: | | | | | |-------|--|--|--|--| | | | | | | ## UNIT 2 STUDY GUIDE | Concept | What is important? | Examples | | | | |--|---|---|--|--|--| | Classifying
matter
based on | Pure Substancescan be elements orcompounds. | Elements - On Table S, can't be broken down, all atoms are the same | | | | | | Mixtures are NOTpure substances.Particle diagrams | Compounds - Made up of 2+ different elements bonded | | | | | | Symbols/formulasDescriptions | Homogeneous mixtures - Made up of 2+ different substances (elements or compounds or both) physically blended, evenly scattered Heterogeneous mixtures - Made up of 2+ different substances (elements or compounds or both) physically blended, unevenly scattered (sorted) | | | | | Identify
states of
matter
using | □ Particle diagrams□ Descriptions | 1. Complete the particle diagram below to show what the substance would look like after evaporating. $Hg(I) \rightarrow Hg(g)$ 2. Complete the box below by writing (Y) yes or (N) no. Phase Definite Shape Solid Definite Volume Solid Liquid Gas 3. What is aqueous (aq)? | | | | | | □ Filtration | 1. What types of mixtures can each separate? | |-------------------------|------------------|---| | Physical | □ Distillation | 2. What different properties make these separations possible? | | techniques
used to | □ Chromatography | | | separating
mixtures | □ Evaporation | 3. What is the difference between fractional distillation and simple distillation? | | | | | | | | 1. The volume of the liquid is 25.8 mL. Is this a physical or chemical property? How do you know? | | | □ Physical | | | | □ Chemical | 2. NaCl is soluble in water. Is this a physical or chemical property? How do you know? | | Properties
of matter | | | | | | 3. Baking soda can react with vinegar to form a gas. Is this a physical or chemical property of baking soda? How do you know? | | | | | | | | 1. Draw a physical change: | |---------------------------------------|--|--| | Recognizing
physical
changes by | Particle diagramsDescriptionsEquations | 2. What are some examples of physical changes? 3. Why does this equation represent a physical change? NaCl(s) + H₂O(l) → NaCl(aq) | | Recognizing
chemical
changes by | □ Particle diagrams □ Descriptions □ Equations | Does the diagram below represent a physical or chemical change? How do you know? | | Periodic
Table Intro | □ Compounds vs.Elements□ Table S | Know the location of the metals, metalloids, nonmetals, and noble gases on the Periodic Table & use Table S to locate element names from their symbols Consider the following substances: Co, CO, MgCl₂, Cl₂ - Which are considered compounds and how do you know? | | | | |-------------------------|--|---|--|------------------------|---------------| | Compound
Formulas | □ Reading compound formulas | 1. Determine the number each of the following 2 (NH ₄) ₃ PO ₄ 3 Ba(NO ₃) ₂ | | oms of each element, o | # Total Atoms |