Unit 5: Atomic Theory Study Guide

If you can do all the things listed below, you are ready for the Unit 4 test. Place a checkmark next to each item that you can do! If a sample problem is given, complete it as evidence.

	Dalton's Model:
1. I can describe John Dalton's contribution to our understanding of the atom.	What it looked like:
	Thomson's Experiment:
2. I can describe JJ Thomson's contribution to our understanding of the atom.	Thomson's Model:
	What it looked like:
	Rutherford's Experiment:
3. I can describe Ernest Rutherford's contribution to our understanding of the atom.	Rutherford's Model:
	What it looked like:
	_
	Bohr's Model:
4. I can describe Niels Bohr's contribution to our understanding of the atom.	What it looked like:

5. I can describe James Chadwick's contribution to our understanding of the atom.	What subatomic particle did Chadwick discover?			
	What does the mo	dern model of th	e atom look like?	
6. I can describe how Schrodinger, Heisenberg, Pauli, Dirac, and others contributed to our understanding of the atom.	Where, in an atom, are electrons likely to be found according to the modern model?			
	From oldest to new an atom.	west, list the mod	els that we have u	sed to describe
7. I can state the chronological order of atomic models.				
8. I can state the three subatomic particles, their location in an atom, their		Particle #1	Particle #2	Particle #3
	Name	proton	neutron	electron
	Charge			
charges, and their masses (in amu).	Mass			
	Location in Atom			
9. I can explain why atoms are electrically neutral.	Atoms are electrically neutral because the number of is equal to the number of			
	Definitions:			
10. I can define mass number and atomic number.	atomic number –			

	In an atom of ²¹² Po, how many protons are present?
11. Given the mass number, I can determine the number of protons, neutron, and electrons in an atom.	84
	In an atom of ²¹² Po, how many electrons are present? 84
	In an atom of ²¹² Po, how many neutrons are present? 84
12. I can use the	How many protons are in an atom of selenium?
Periodic Table to determine the atomic number of an element.	How many protons are in an atom of silicon?
	Definition:
	isotope –
13. I can define isotope.	
	Write the four different methods of isotopic notation for an atom of
11 I can represent an	bromme that has 45 neutrons.
atom in any of the four	Method 1 Method 2 Method 3 Method 4
methods of isotopic notation.	
	Element Q has two isotopes. If 77% of the element has an isotopic
15. I can calculate	mass of 83.7 amu and 23% of the element has an isotopic mass of 89.3 amu, what is the average atomic mass of the element?
average atomic mass given	
the masses of the naturally occurring isotopes and the	
percent abundances.	
	What is the most abundant isotope of Oxygen? How did you know?
16. I can determine the most and least abundant isotope from a series of given isotopes and the average atomic mass OR using the periodic table	Given the following isotopes of Carbon (12, 13, 14), which is the most abundant if the average atomic mass is 12.011amu?

18. I can recall the three isotopes of Hydrogen by name, mass number, and relative abundance	
19. I can define ion, cation, and anion.	Definitions: ion – cation –
20. Given the mass number and the charge, I can determine the number of protons, neutrons, and electrons in an ion.	How many protons are in ${}^{19}F^{1-?}$ 9 How many neutrons are in ${}^{19}F^{1-?}$ 9 How many electrons are in ${}^{19}F^{1-?}$ 9

21. I can define principal energy level, orbital, ground state, excited state, electron configuration, and bright line spectrum.	<u>Definitions:</u> principal energy level (PEL)–
	orbital –
	ground state –
	excited state –
	electron configuration –
	bright line spectrum –
	PEL 1 holds a maximum of electrons.
22. I can state the maximum number of electrons that will	PEL 2 holds a maximum of electrons.
fit into each of the first	PEL 3 holds a maximum of electrons.
four principal energy levels.	PEL 4 holds a maximum of electrons.
23. I can state	As the distance between the nucleus and the electron increases, the energy of
the relationship between distance from the nucleus and energy of an electron.	the electron
24. I can state the relationship between the number of the principal energy level and the distance to the atom's nucleus.	As the number of the PEL increases, the distance to the nucleus

25. I can explain, in terms of subatomic particles and energy states, how a bright line spectrum is created.	A bright line spectrum is created when electrons in a high energy state release energy and return to a lower energy state
26. I can identify the elements shown in a bright line spectrum.	Bright-Line Spectra Element D Element E Element G Mixture 750 nm 360 nm Which element(s) is/are present in the mixture?
27. I can define valence electrons.	Definition: valence electron –
28. I can locate and interpret an element's electron configuration on the Periodic Table.	How many valence electrons does an atom of rubidium have in the ground state? How many principal energy levels contain electrons in an atom of iodine in the ground state?
29. I can identify an electron configuration that shows an atom in the excited state.	Which electron configuration represents an atom of potassium in the excited state? A) 2-8-7-1 B) 2-8-8-1 C) 2-8-7-2 D) 2-8-8-2
30. I can draw Lewis electron dot diagrams for a given element.	Draw the Lewis electron dot diagram for the following atoms: Li Be B C N O F Ne

	Definition: octet of valence electrons –
31. I can define and state the importance of "octet of valence electrons."	The importance of having a complete"octet of valence electrons" is