Review Packet Answer Key

Redox (Topic 9 in your review book)

1.	1	
2.	1	
3.	1	
4.	4	
5.	4	
6.	4	
7.	2	
8.	4	

9. 2 10.4

11.4 12.4

13.4

17.2 18. 1 19.3 20.4 21.3

22.3 23. 1 24.3 25.3 26.4

27.2 28.4 29.3 30.2

31.4 32.4

14.4 15. 1 16.4

33. Mg is more reactive and correctly oxidizes, while H⁺ is less reactive and correctly reduces.

34.
$$\underline{\mathbf{1}}$$
 Mg (s) + $\underline{\mathbf{2}}$ HCl(aq) $\rightarrow \underline{\mathbf{1}}$ H₂ (g) + $\underline{\mathbf{1}}$ MgCl₂ (aq)

35. Mg
$$\rightarrow Mg^{2+} + 2 e^{-}$$

36. The cell is connected to a battery

37. From -2 to 0.

38.
$$\underline{\mathbf{3}} \operatorname{Cu}^{2+}(\underline{aq}) + \underline{\mathbf{2}} \operatorname{Al}(s) \rightarrow \underline{\mathbf{3}} \operatorname{Cu}(s) + \underline{\mathbf{2}} \operatorname{Al}^{3+}(\underline{aq})$$

39. The Al(s) is oxidized, and therefore loses electrons to form Al3+ (aq) in solution.

40. The salt bridge permits the migration of ions between the cells (and helps to close the circuit!)

41. Oxidation numbers are changing from the reactant to product side $(Cu^{2+} \rightarrow Cu; Fe \rightarrow Fe^{2+})$

42. Electrons

43.
$$Fe^{2+} + 2e^{-} \rightarrow Fe$$

44. Zn is the most reactive, followed by Fe, then Cu being the least reactive.