Review Packet Answer Key

Solutions (Topic 7 in your review book)

1.	3	10. 3
2.	2	11. 4
3.	3	12. 3
4.	4	13. 2
5.	1	14. 3
6.	3	15. 4
7.	4	16. 4
8.	2	17. 4
9.	1	18. 2

- 19. The water molecules should be shown with their positive ends near the negatively charged Cl⁻ ion, or in other words, the hydrogen ends should be closest to the Cl⁻ ion.
- 20. This point when plotted falls below the solubility curve, so the solution is **unsaturated**.
- 21. O₂ has a low solubility due to the fact that O₂ molecules are nonpolar and water molecules are polar, hence they have little ability to attract each other, so O₂ does not dissolve well.
- 22. Use the parts per million equation from Table T: ppm = (0.0070 g/1000.0070 g) X 1,000,000 = 7 ppm
- 23. Pressure has **no effect** on the solubility of KNO₃ (solid). Pressure over a solution only affects the solubility of gaseous solutes like CO₂.
- 24. At 15°C, the solubility of KNO₃ is 30 g per 100 g of water. Since 65 grams of KNO₃ are present in the system, (65-30) = **35** g of KNO₃ will settle to the bottom.
- 25. The "-ol" suffix on the name "1,2-ethanediol" tips you off that this compound is an alcohol.
- 26. Since water is polar, the fact that 1,2 ethanediol mixes well with water implies that the **molecules** of 1,2 ethanediol are also polar.
- 27. Use the "moles" equation from Table T;

Moles =
$$6690/62 = 108$$
 moles

28. Use the parts per million equation from Table T:

300 ppm = (mass of solute/1000 g of solution) x 1,000,000 Mass of KOH = 0.300 grams

29. 97°C