<u>Topic: Formulas & Names, Equations, Moles,</u> <u>Molar Mass, & types of Reactions</u>

Outline

1. A compound is a substance composed of two or more different elements that are chemically combined in a fixed proportion. A chemical compound can only be broken down by chemical means.

2. Chemical compounds can be represented by a specific formula and assigned a name based on the IUPAC system.

- 3. Types of chemical formulas include empirical, molecular, and structural.
- Empirical formulas show elements in their simplest whole number ratios. This may or may not be the same as the molecular formula.
- ✓ Molecular formulas show the actual number of atoms per element in a single molecule.
- ✓ Structural formulas show the number of each type of atom as well as their physical arrangement.
- 4. All chemical reactions show a conservation of mass, energy and charge.
- 5. A balanced chemical equation represents conservation of atoms.

6. The coefficients in a balanced chemical equation can be used to determine <u>mole</u> <u>ratios</u> in the reaction, and can further be used to predict relationships about amounts between products and reactants.

7. The molar mass of a substance is the sum of the atomic masses of its atoms. The molar mass (gram formula mass) equals the mass of one mole of that substance.

8. The percent composition by mass of each element in a compound can be calculated mathematically.

9. Types of chemical reactions include synthesis, decomposition, single replacement, and double replacement.

Equations & Stoichiometry – Practice Questions

1.	Which substance ha	is the greatest molec	ular mass?	
	(1) H_2O_2	(2) NO	(3) CF ₄	(4) I ₂
2.	What is the gram fo	ormula mass of Ca(O	H) ₂ ?	
	(1) 29 g	(2) 34 g	(3) 57 g	(4) /4 g
3.	What is the total nu $Pb(C_2H_2O_2)_2?$	mber of moles of ato	oms present in 1 gra	m formula mass of
	(1) 9	(2) 14	(3) 3	(4) 15
4.	The percent by mas	s of carbon in HC_2H_3	O_2 is equal to	50
	(1) $\frac{12}{10} \times 100$	(2) $\frac{24}{10} \times 100$	(3) $\frac{60}{21} \times 100$	(4) $\frac{60}{12} \times 100$
	60	60	24	12
_				
5.	What is the empirica	al formula of C_3H_6 ?	(3) CH.	
			$(3) CH_3$	(4) 0116
6.	The name of the co	mpound KClO ₂ is pot	assium	
	(1) hypochlorite		(3) chlorate (4) perchlorate	
7.	Which formula is co	rrect for ammonium	sulfate?	
	(1) NH_4SO_4	(2) $(NH_4)_2SO_4$	(3) $NH_4(SO_4)_2$	(4) (NH) ₃ (SU ₄) ₂
8.	3. The molecular formula of a compound is represented by X_3Y_6 . What is the empirical formula of this compound?			
	(1) X ₃ Y	(2) X ₂ Y	(3) XY ₂	(4) XY
9.	9. The number of moles of molecules in a 12.0-gram samples of Cl_2 is			f Cl₂ is
	(1) $\frac{12.0}{35.5}$ mole	(2) $\frac{12.0}{71.0}$ mole	(3) 12.0 moles	(4) 12.0 x 35.5 moles
10	. What is the total nu	mber of moles of sul	fur atoms in 1 mole	of $Fe_2(SO_4)_3$?
		(2) 10	(3) 3	(4) 1/

11. Given the unbalanced equation:

$$\underline{\text{CaSO}_4 + \underline{\text{AICI}_3 \rightarrow \underline{\text{AI}_2(SO_4)_3 + \underline{\text{CaCI}_2}}}$$

What is the coefficient of $AI_2(SO_4)_3$ when the equation is completely balanced using the smallest whole-number coefficients?

(1) 1 (2) 2 (3) 3 (4) 4

12. Given the unbalanced equation:

$\underline{AI}(s) + \underline{O}_2(g) \rightarrow \underline{AI}_2O_3(s)$

When this equation is correctly balanced using smallest whole numbers, what is the coefficient of O_2 (g)? (1) 6 (2) 2 (3) 3 (4) 4

13. Given the reaction:

$4 \text{ NH}_3 + 5 \text{ O}_2 \rightarrow 4 \text{ NO} + 6 \text{ H}_2\text{O}$

What is the total number of moles of NO produced when 1.0 mole of O2 is completely
consumed?(1) 1.0 mole(2) 1.2 moles(3) 0.80 mole(4) 4.0 moles

14. Given the equation:

 H_2 (g) + CI_2 (g) \rightarrow 2 HCl (g)

What is the total number of moles of HCl (g) produced when 3 moles of H_2 (g) is completely consumed? (1) 5 moles (2) 2 moles (3) 3 moles (4) 6 moles

Formulas, Equations & Stoichiometry Review – questions from previous Regents exams

1. Which equation shows conservation of atoms?

 $(1) H_2 + O_2 \rightarrow H_2O$ $(2) H_2 + O_2 \rightarrow 2 H_2O$ $(3) 2 H_2 + O_2 \rightarrow 2 H_2O$ $(4) 2 H_2 + 2 O_2 \rightarrow 2 H_2O$

2. Which substance can be broken down by a chemical change?

(1) antimony	(3) hexane
(2) carbon	(4) sulfur

3. What is the gram formula mass of Ca₃(PO₄)₂?
(1) 248 g/mol
(2) 263 g/mol
(4) 310 g/mol

4. In which compound is the ratio of metal ions to nonmetal ions 1 to 2?

- (1) calcium bromide
- (2) calcium oxide
- (3) calcium phosphide
- (4) calcium sulfide
- 5. Given the balanced equation representing a reaction:

 $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$ What is the mole ratio of CO(g) to $CO_2(g)$ in this reaction? (1) 1:1 (3) 2:1

- $\begin{array}{c} (1) & 1.1 \\ (2) & 1.2 \\ (4) & 3.2 \\ \end{array}$
- 6. Given the balanced equation representing a reaction:

 $H^+(aq) + OH^-(aq) \rightarrow H_2O(l) + 55.8 \text{ kJ}$ In this reaction there is conservation of

- (1) mass, only
- (2) mass and charge, only
- (3) mass and energy, only
- (4) mass, charge, and energy

7. Which polyatomic ion contains the greatest number of oxygen atoms?

(1) acetone	(3) hydroxide
(2) carbonate	(4) peroxide

8. Which formula represents an ionic compound?

I I I I I I I I I I I I I I I I I I I	
(1) H_2	(3) CH ₃ OH
(2) CH ₄	$(4) \text{ NH}_4\text{Cl}$

9. What is the total number of different elements present in NH₄NO₃?

(1) 7	(3) 3
(2) 9	(4) 4

10. Which formula represents lead (II) chromate?

(1) $PbCrO_4$	(3) Pb_2CrO_4
(2) $Pb(CrO_4)_2$	(4) $Pb_2(CrO_4)_3$

11. Which particle diagram represents a sample of one compound, only?

(1)

(3)

12. An atom in the ground state contains a total of 5 electrons, 5 protons, and 5 neutrons. Which Lewis electron-dot diagram represents this atom?

•X•	•X•	X٠	:Х
(1)	(2)	(3)	(4)

13. Given the balanced equation representing the reaction between propane and oxygen: C₃H₈ + 5O₂ → 3CO₂ + 4H₂O According to this equation, which ratio of oxygen to propane is correct?

$$(1) \ \frac{5 \text{ grams } \mathrm{O}_2}{1 \text{ gram } \mathrm{C}_3 \mathrm{H}_8} \qquad \qquad (3) \ \frac{10 \text{ grams } \mathrm{O}_2}{11 \text{ grams } \mathrm{C}_3 \mathrm{H}_8}$$

$$(2) \ \frac{5 \ \text{moles} \ \mathrm{O}_2}{1 \ \text{mole} \ \mathrm{C}_3 \mathrm{H}_8} \qquad \qquad (4) \ \frac{10 \ \text{moles} \ \mathrm{O}_2}{11 \ \text{moles} \ \mathrm{C}_3 \mathrm{H}_8}$$

14. Which substance can be decomposed by chemical means?

(1) tungsten	(3) krypton
(2) antimony	(4) methane

15. Given the balanced equation representing a reaction:

 $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ What is the *minimum* number of moles of O₂ that are needed to completely react with 16 moles of NH₃? (1) 16 mol (3) 64 mol (2) 20. mol (4) 80. mol

- 16. Element X reacts with iron to form two
different compounds with the formulas FeX
and Fe2X3.To which group on the Periodic Table does
element X belong?(1) Group 8(2) Group 2(4) Group 16
- 17. The molar mass of Ba(OH)₂ is (1) 154.3 g (3) 171.3 g (2) 155.3 g (4) 308.6 g
- 18. Given the balanced equation representing a reaction:
- $H_2SO_4(aq) + 2KOH(aq) \rightarrow K_2SO_4(aq) + 2H_2O(l)$ Which type of reaction is represented by this equation?
 - (1) decomposition
 - (2) neutralization
 - (3) single replacement
 - (4) synthesis
- 19. A hydrated compound contains water molecules within its crystal structure. The percent composition by mass of water in the hydrated compound CaSO₄•2H₂O has an accepted value of 20.9%. A student did an experiment and determined that the percent composition by mass of water in CaSO₄•2H₂O was 21.4%.

Calculate the percent error of the student's experimental result. Your response must include *both* a correct numerical setup and the calculated result. [2]

20. Write the empirical formula for the compound C_8H_{18} . [1]

Some dry chemicals can be used to put out forest fires. One of these chemicals is NaHCO₃. When NaHCO₃(s) is heated, one of the products is $CO_2(g)$, as shown in the balanced equation below.

 $2 \operatorname{NaHCO}_3(s) + \operatorname{heat} \rightarrow \operatorname{Na_2CO}_3(s) + \operatorname{H_2O}(g) + \operatorname{CO}_2(g)$

- 21. Show a correct numerical setup for calculating the percent composition by mass of carbon in the product Na₂CO₃. [1]
- 22. Identify whether the reaction is endothermic or exothermic. [1]
- 23. Determine the total number of moles of CO₂(g) produced when 7.0 moles of NaHCO₃(s) is completely reacted. [1]

moles

24. Balance this chemical equation: [1]

 $\underline{S(s)} + \underline{KClO_3(s)} \rightarrow \underline{SO_2(g)} + \underline{KCl(s)} + energy$

Base your answers to questions 25 through 27 on the information below.

Rust on an automobile door contains $Fe_2O_3(s)$. The balanced equation representing one of the reactions between iron in the door of the automobile and oxygen in the atmosphere is given below.

 $4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$

- 25. Identify the type of chemical reaction represented by this equation. [1]
- 26. Determine the gram-formula mass of the product of this reaction. [1]

27. Write the IUPAC name for Fe₂O₃. [1]

Ozone gas, O_3 , can be used to kill adult insects in storage bins for grain without damaging the grain. The ozone is produced from oxygen gas, O_2 , in portable ozone generators located near the storage bins. The concentrations of ozone used are so low that they do not cause any environmental damage. This use of ozone is safer and more environmentally friendly than a method that used bromomethane, CH₃Br. However, bromomethane was more effective than ozone because CH₃Br killed immature insects as well as adult insects.

Adapted From: The Sunday Gazette (Schenectady, NY) 3/9/03

28. Determine the total number of moles of CH3Br in 19 grams of CH3Br (gram-formula mass = 95 grams/mol). [1]

29. Given the balanced equation for producing bromomethane:

$Br_2 + CH_4 \rightarrow CH_3Br + HBr$

Identify the type of organic reaction shown. [1]

30. Based on the information in the passage, state *one* advantage of using ozone instead of bromomethane for insect control in grain storage bins. [1]

A hydrate is a compound that has water molecules within its crystal structure. The formula for the hydrate $CuSO_4 \cdot 5H_2O(s)$ shows that there are five moles of water for every one mole of $CuSO_4(s)$. When $CuSO_4 \cdot 5H_2O(s)$ is heated, the water within the crystals is released, as represented by the balanced equation below.

 $CuSO_4 \bullet 5H_2O(s) \rightarrow CuSO_4(s) + 5H_2O(g)$

A student first masses an empty crucible (a heat-resistant container). The student then masses the crucible containing a sample of $CuSO_4 \cdot 5H_2O(s)$. The student repeatedly heats and masses the crucible and its contents until the mass is constant. The student's recorded experimental data and calculations are shown below.

Data and calculation before heating:

mass of $CuSO_4 \bullet 5H_2O(s)$ and crucible	21.37 g
- mass of crucible	19.24 g
mass of $CuSO_4 \bullet 5H_2O(s)$	2.13 g

Data and calculation after heating to a constant mass:

mass of $CuSO_4(s)$ and crucible	20.61 g
 mass of crucible 	19.24 g
mass of CuSO ₄ (s)	1.37 g

Calculation to determine the mass of water:

mass of $CuSO_4 \bullet 5H_2O(s)$	2.13 g
- mass of CuSO ₄ (s)	1.37 g
mass of $H_2O(g)$	0.76 g

31. Identify the total number of significant figures recorded in the calculated mass of CuSO₄•5H₂O(s). [1]

32. In the space below, use the student's data to show a correct numerical setup for calculating the percent composition by mass of water in the hydrate. [1]

33. Explain why the sample in the crucible must be heated until the constant mass is reached. [1]